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Abstract. We analyse the twist-three amplitudes that can give rise to single-spin asymmetries in hadron-
hadron scattering; in so doing we bring to light a novel factorisation property. As already known, the
requirement of an imaginary part leads to consideration of twist-three contributions that are also related
to transverse spin in deep-inelastic scattering. In particular, when an external line becomes soft in contribu-
tions arising from three-parton correlators, the imaginary part of an internal propagator may be exposed.
As shown here, it is precisely this kinematical configuration that permits the factorisation. An important
feature is the resulting simplification: the calculation of tens of Feynman diagrams normally contributing
to such processes is reduced to the evaluation of products of the simple factors derived here and known two-
body helicity amplitudes. We thus find clarifying relations between the spin-dependent and spin-averaged
cross-sections and formulate a series of selection rules. In addition, the kinematical dependence of such
asymmetries, is rendered more transparent.

1 Introduction: single-spin phenomenology

A large body of information has now been gathered in re-
gard of single-spin asymmetries in semi-inclusive hadronic
processes [1], where the striking feature is the magnitude
of such effects (up to ∼40%). Such phenomena present a
theoretical challenge: to find sizeable interfering spin-flip
and non-flip amplitudes with relative imaginary phases,
a severe difficulty for a gauge theory with near-massless
fermions [2]. At the same time, although subject to some
early confusion, there is now a clear understanding of the
nature and rôle of three-parton twist-three correlators in
the transverse-spin dependence of deep-inelastic scatter-
ing (DIS) [3–5]. However, the distribution functions asso-
ciated with such structures will be difficult to study com-
prehensively [6], especially if consideration is restricted to
DIS. Indeed, although data are steadily becoming avail-
able [7], further experimental knowledge will be necessary
for a complete description of transverse-spin phenomena.
Thus, single-spin asymmetries, which are intimately re-
lated to the same twist-three amplitudes, may be an in-
valuable integration of our knowledge in this area.

The experimental aspects of single-spin asymmetries
are well documented [8]: the main point to stress is that
the measured effects do not appear at all suppressed, even
for values of pT where it might be hoped that perturbative
QCD (pQCD) should be applicable. On the other hand, it
has long been held that they would not be reproducible in
pQCD [2], although a satisfactory (but largely incomplete)
description of such asymmetries is provided by a number
of non-perturbative approaches.
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One might question whether or not it even makes sense
to apply pQCD to processes that, for the time being, have
only been measured at relatively small values of pT . How-
ever, recall that Anselmino et al. [9] have made successful
fits to the existing pion data, based on pQCD-inspired
models. Moreover, the hyperon data does reach large val-
ues of pT , where there is no hint of the polarisation disap-
pearing. If these transverse-spin effects do have a common
origin, then one might hope that a perturbative approach
should give a reasonable description down to some typical
hadronic scale. In this respect, although Teryaev [10] has
recently shown that twist-four effects must become im-
portant at large parton x, where twist-three contributions
would otherwise induce positivity violation owing to their
lower-power dependence on (1−x), this is not an argument
against the applicability of pQCD. Rather, it underlines
the well-known fact that while higher twist is important
for x → 1, there is an intermediate region where it is neg-
ligible even at very low scales. Indeed, just this type of
process, being so-to-speak only slightly higher twist, may
well provide clues to the transition between regions.

The basic hurdle lies then in the need for spin-flip am-
plitudes with relative imaginary phases; in a suitable he-
licity basis it can be shown that single transverse-spin ef-
fects are related to the imaginary part of the interference
between spin-flip and non-flip amplitudes. Normally, in a
gauge theory, spin-flip can only be generated via fermion
masses, and phases by loop corrections. However, some
time ago Efremov and Teryaev noted [4] that the loop im-
plicit in diagrams containing an extra partonic leg (arising
in higher-twist transverse-spin effects) naturally leads to
an unsuppressed imaginary part with spin flip. To under-
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Fig. 1. Example contributions to
twist-three transverse single-spin ef-
fects

stand this, it is helpful to appreciate that the extra loop
(näıvely implying higher order in αs) is accompanied by a
large logarithm. Thus, the associated distribution function
is to be considered at the level of the usual leading-order
densities. In other words, at leading-logarithmic level, the
usual infinite sum of terms in (αs log Q2)n is present; how-
ever, just the very first term is missing [11]. In practice,
the extra power of αs inherent to these contributions is
effectively absorbed into the hadron-parton correlator.

We note in passing that twist is best considered in
terms of the power of Q2 with which a given contribution
appears in a hadronic cross-section [6]: in the single-spin
case one expects asymmetries to behave as

A ∝ µpT

µ2 + p2
T

, (1)

where µ is some typical hadronic mass scale. Again,
Teryaev [10] has discussed how the necessary inclusion
of twist four leads to the form of the denominator in (1).
Thus, the usual suppression should be observed asymp-
totically while a roughly linear dependence is expected for
low values of pT . The intriguing implication of Teryaev’s
analysis is that the point of maximum asymmetry should
indicate the onset of the regime dominated by leading
twist. If the hyperon data is typical then this already oc-
curs at around 1 GeV for intermediate values of x. How-
ever, the pT dependence would suggest that at the point
where higher twist is reduced by a factor 10 the asymme-
try will still be ∼30% of its maximum value.

Much progress has been made in the direction of inter-
relating the various aspects of polarisation phenomenol-
ogy [4,12–14,16,15,17]. In particular, in the case of twist-
three contributions, the possibility that one of the hard-
scattering propagators may generate an imaginary part
in the soft limit has already been exploited as a possible
mechanism for the large asymmetries mentioned above.
Early work concentrated on prompt-photon production [4,
12–14]; other processes that have been considered are pion
production [15] and Drell-Yan [16].

Here we present a systematic analysis to demonstrate
how the requirement of an imaginary part (and thus a soft
internal propagator) greatly simplifies calculations owing
to a novel factorisation property of the Feynman ampli-
tudes involved. After some preliminary definitions in the

next section and clarification of the spin-flip requirement
at the partonic level, Sect. 3 contains the main derivation
and results, illustrating how the factorisation arises and
the simple selection rules that follow therefrom. In the con-
cluding section we present the resulting formal expression
for the spin-dependent partonic cross-sections, together
with some discussion.

While the technique presented opens the way to sim-
pler and more rapid calculation, we do not consider it
useful to present yet another evaluation of any particular
process for two reasons: firstly, a model input for the un-
known parton correlators would, in any case, be required
and we have nothing new to add there; and, secondly,
many calculations have already been published (as cited
above) and this technique should not, of course, produce
different results.

2 Preliminaries and definitions

Some relevant twist-three diagrams are shown in Fig. 1;
such diagrams may contribute to single-spin asymmetries
owing to the imaginary parts implicit in the internal lines,
according to the standard propagator prescription:

1
k2 ± iε

= IP
1
k2 ∓ iπδ(k2), (2)

where IP indicates the principal value. While the imag-
inary part is never exposed (for kinematical reasons) in
the usual two-to-two lowest-order partonic scattering am-
plitudes, in those containing three-parton correlators it
is possible for one internal line to become soft (along
a boundary of the three-body phase space). The three
boundaries of interest are given by the kinematical lim-
its: xi → 0, where i = q, q̄ or g.

The strong flavour-spin correlation in the measured
pion asymmetries prompts initial consideration of the di-
agrams of the qqg amplitude (Fig. 2a). This will certainly
demonstrate the full potential of the approach. However,
the triple-gluon correlator (Fig. 2b) may also contribute
[17,14] and should be taken into account; the technique de-
scribed here does not depend on the detailed form of the
correlators and thus will suffice in this case too. There-
fore, we shall concentrate on contributions arising from
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Fig. 2. The basic three-parton twist-three qqg and ggg
hadronic amplitudes contributing to transverse-spin asymme-
tries

diagrams of the type shown in Fig. 1 and, in particular,
on those arising when either a gluon or quark line becomes
soft [4,12]. These may be divided into three classes: gluon
insertion into (i) initial external lines, (ii) final external
lines and (iii) internal lines. We shall consider these in
turn.

The first two classes can, in principle, both provide
an imaginary part: the insertion into an on-shell external
line leads to an additional internal propagator, which may
reach the soft limit. However, the transversity (see later)
of the gluon connected to the hadronic amplitudes in ques-
tion forces a non-zero transverse momentum in the struck
line. Thus, the collinearity of the initial lines forces such a
contribution to be of even higher twist. On the other hand,
the pT dependence of the final-state parton is just as sug-
gested by the observed phenomena and only final-state
external insertions give non-vanishing contributions. The
last class leads to an imaginary part only when another ex-
ternal line becomes soft, i.e., when the gluon line carries all
the momentum of the polarised hadron (xg = ±1). These
diagrams may also be written in a factorised form, view-
ing them in terms of soft fermionic insertions; although
the final result is more complicated and both initial- and
final-state insertions contribute.

There are two qqg hadronic amplitudes (Fig. 2a) for
the twist-three contribution [5]:

DA(x1, x2) γ5/psµ
T and DV (x1, x2) /p

iεµpp̄sT

p.p̄
, (3)

where p and sT are the momentum and (purely transverse)
spin vectors of the incoming polarised hadron while p̄ be-
longs to the unpolarised state; typically one takes pµ =
E(1, 0, 0, 1) and p̄µ = E(1, 0, 0,−1) in the partonic centre-
of-mass frame. The parton correlators, DA,V (x1, x2), have
the following symmetry properties under interchange of
their arguments:

DA(x1, x2) = DA(x2, x1),

DV (x1, x2) = −DV (x2, x1). (4)

It is instructive to rewrite the hadron-parton ampli-
tudes using a suitable helicity basis, in which the calcula-
tion simplifies. To do this we shall adopt a common and
convenient notation [18] and ignore quark-mass contribu-
tions:

u±(p) = |p±〉 and ū±(p) = 〈p±| . (5)

We may thus write

/p = |p+〉 〈p+| + |p−〉 〈p−| ,

γ5/p = |p+〉 〈p+| − |p−〉 〈p−| . (6)

For the amplitudes (3), the gluon is linearly polarised in a
plane perpendicular to the beam (parallel and orthogonal
to sT respectively for the axial and vector amplitudes).
Thus, the polarisation vectors take the following natural
forms:

ξµ
A(p) = sµ

T and ξµ
V (p) = − iεµpp̄sT

p.p̄
. (7)

A helicity basis may be constructed using these:

ξ̃µ
±(p) =

p.p̄η̃µ + p̄.η̃pµ − p.η̃p̄µ ∓ iεµpp̄η̃

2
√

p.p̄ p.η̃ p̄.η̃

=
1√
2

[
sµ

T ∓ iεµpp̄sT

p.p̄

]

=
1√
2

[
ξµ
A(p) ± ξµ

V (p)
]
, (8)

where the choice of auxiliary vector,

η̃µ = sµ
T +

pµ + p̄µ

√
2p.p̄

with η̃2 = 0, (9)

implicitly fixes the phase convention for circular polarisa-
tion. A more conventional choice for the phase is to take
η in the scattering plane and perpendicular to the beam
axis; in terms of such a set (without the tilde) one has

ξ̃µ
±(p) = e±iφsη ξµ

±(p), (10)

where φsη is the azimuthal angle between sT and η.
Expressions (3) can thus be rewritten as

DA(x1, x2)
[ |p+〉 〈p+| − |p−〉 〈p−| ]
× 1√

2

[
eiφξµ

+(p) + e−iφξµ
−(p)

]
,

DV (x1, x2)
[ |p+〉 〈p+| + |p−〉 〈p−| ]
× 1√

2

[
eiφξµ

+(p) − e−iφξµ
−(p)

]
. (11)

Note that, since ξ− = ξ∗
+, the last factors in the two ex-

pressions above are respectively purely real and purely
imaginary. One also clearly sees how the axial (vector)
contributions are related to amplitudes involving quark
(gluon) helicity differences. The necessary phases are gen-
erated by combinations of the propagator imaginary parts
and the gluon polarisation-vector phases.

The triple-gluon amplitudes have been considered by
Ji [17] and lead to more complex expressions involving
a number of correlation functions. However, the common
simplifying characteristic is that the associated gluon po-
larisation projectors are restricted to the transverse plane
and so can be represented by physical polarisation vectors.

3 Factorisation in single-spin τ =3 amplitudes

Let us consider first of all the case of soft-gluon insertions
into external quark lines, as in the left-hand diagram of
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Fig. 2a. Extracting the imaginary part of the quark line
(marked • in the figure) to the left of the gluon vertex
forces xg = 0; taking this into account, the vertex may be
written as

ξµ
X(p) 〈k, hk| γµ/k . . .

= 〈k, hk| /ξX

∑
h

|k, h〉 〈k, h| . . . (X = A, V ),(12)

where the ellipsis indicates the rest of the amplitude to
the left of the vertex, and colour factors have been sup-
pressed. Including the remnant factors from the imaginary
propagator part and factoring the 〈k, h| projector above
into the rest of the amplitude, (12) reduces to a simple
factor:

−iπ
k.ξX(p)

k.p
δ(xg), (13)

multiplying the now pure two-to-two amplitudes (see the
right-hand diagram of Fig. 3a). The complex-conjugate
diagrams acquires a minus sign, arising from the opposite
sign of the iε in the propagator.

Soft-gluon insertions into external gluon lines lead to
expressions of the type:

∑
λ

Vµσνξµ
X(p)ξ∗σ

λ (k)ξν
λk

(k)ξρ
λ(k) . . . , (14)

where the rightmost circular gluon polarisation vector will
be factored into the remaining amplitude (represented by
the ellipsis), and Vµσν is just the three-gluon vertex here:

Vµσν = gµσ(p − k)ν + gνµ(−k − p)σ + gσν2kµ. (15)

Only the last term survives (owing to the gauge choice)
and we obtain

−iπ
k.ξX(p)

k.p
δ(xg)δλ,−λk

, (16)

which has the same structure as the previous case, except
that the gluon helicity is flipped (λ = −λk). And with the
phase conventions adopted one has

k.ξ±(p) = 1√
2
|kT |e±iφkη , (17)

where φkη is the azimuthal angle between kT and η. The
particular phase dependence on φkη is just what is needed:
in combination with that coming from the initial state
gluon (φsη, see above), it leads to the expected sinφks

dependence of the final cross-section.
Three selection rules emerge:

1. The transverse nature of the gluon kills all contribu-
tions of initial-state insertions (k = p or p̄). Note that,
for insertions into the incoming lines from the other
(unpolarised) hadron, this depends on the choice of p
as the gauge-fixing vector for the gluons from the other
hadron.

2. Unless the second hadron is also polarised, the qqg ax-
ial contribution vanishes owing to parity conservation,
as it is proportional to a helicity difference for the in-
coming quark from the first hadron.

3. Although proportional to a quark helicity sum, the qqg
vector contribution does not survive as it is multiplied
by DV (x, x), which vanishes according to 4.1

Note also that, were it non-vanishing, the axial contribu-
tion would lead to a cos φ dependence, i.e., to an up-down
asymmetry.

It is possible to treat the case of soft external quark
lines similarly, as in the left-hand diagram of Fig. 3b. For
want of better terminology, we shall call these soft-quark
insertions; although a description in terms of insertion
would be more pertinent to the case of a supersymmetric
theory. The only subtlety is the change in nature of the
resulting external particle: a fermionic insertion changes a
fermion to a boson and vice versa. The imaginary piece of
the gluon line to the left of the vertex forces xq = 0; tak-
ing this into account and explicitly including the effective
soft-quark spinor, the vertex may be written as

∑
λ

〈k, hk| γµ |p, h〉 ξµ
λ(k) ξν∗

λ (k) . . . , (18)

where again the rightmost term will be factored into the
remaining amplitude. Including the various factors from
the denominator etc., (18) reduces to:

− iπ

k.p
δ(xq) · ih

√
2k.p eihφδλ,−h, (19)

where the factored gluon polarisation vector carries he-
licity −h (see the right-hand diagram of Fig. 3b). Here
the selection rule excluding initial-state insertions applies
only to the partons from the same hadron.

We also see that both the axial and vector structures
may contribute here, as they are proportional to
DA,V (0, x). Moreover, the well-known helicity conserva-
tion rules (forbidding the so-called maximally violating
amplitudes [18,19]) force the non-zero contributions to
come only from the terms in (11) with (hq, λg) = (±,∓).
Thus, the axial and vector contributions arise in simple
linear combinations:

DA(0, x) ± DV (0, x) = D±(0, x) = ∓D∓(x, 0), (20)

see [5] for the relevant definitions. There only remains to
calculate the case of insertions where the gluon is the ex-
ternal line and the quark, internal. This is, however, sim-
ply the complex conjugate of factor (19).

It is worth making a few further observations. Factori-
sation of the amplitudes immediately clarifies the possibil-
ity of large asymmetries, where once they were believed
to be suppressed. First of all, the colour overlap is only
slightly modified while the phase-space is unaltered, and
thus little is lost for reasons of mismatch; the (supersym-
metric [18,19]) Ward identities guarantee the close simi-
larity between amplitudes where a fermion line is replaced
by a gluon. Indeed, the interference is not between dif-
fering kinematical configurations (as often found in early

1 We shall comment later on the possible contribution of
higher-order poles
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Fig. 3. Graphical representation of the amplitude
factorisation in the case of soft external (a) gluon
and (b) quark lines. The solid circle indicates the
line from which the imaginary piece is extracted,
and ξ refers to the gluon entering the factorised
vertex

analyses) but simply between spin-flip and non-flip ampli-
tudes; the quark-insertion factor shown in (19) explicitly
displays the spin-flip nature (between quark and gluon).

In the above analysis we have ignored the possibil-
ity, discussed in the literature [15], that the correlator
DV (x1, x2) might be accompanied by an extra pole in
(x1 − x2).2 Should this prove to be the case, then the
requirement of an imaginary part would still force the
δ-function from the propagator. A Taylor expansion of
DV (x1, x2) about the point (x1 − x2) = 0 would pick out
the first derivative of the correlator but leave all other al-
gebraic manipulations as before. Thus, the selection rule
excluding terms in DV would be avoided while the fac-
torisation property would remain unaltered.

Finally, the apparent higher order in αs of the dia-
grams is removed by the absorption of the gluon prop-
agator and vertices into the hadronic blob itself (as dic-
tated by gauge invariance), leaving an effective tree-level
leading-order graph. Moreover, the expressions may now
be written in compact form and require little effort to cal-
culate; all two-to-two pQCD amplitudes are already well
known. Only the slightly modified colour factors remain
to be evaluated, a task easily performed with the aid of a
symbolic manipulation programme.

4 Conclusions

The resulting forms of the amplitudes given above greatly
simplify the calculation of the asymmetries: the calcula-
tion of the tens of Feynman diagrams normally contribut-
ing is reduced to the evaluation of products of the simple
factors derived here and known two-body helicity ampli-
tudes. Since all two-body helicity amplitudes have indeed
already been calculated in pQCD we shall merely present
formal expressions for the asymmetries, as sums over a

2 The author is particularly indebted to Oleg Teryaev for
clarifying discussions on this point

very limited number of amplitudes for fixed helicities. The
soft-insertion factorisation thus allows the partonic cross-
section to be expressed in the following compact form:

∆σ̂ =
∑
i,j

Cij Mi(x, x̄, kT ) M†
j(x, x̄, kT ), (21)

where Cij represents both the insertion factors given above
and modified colour factors, and the Mi, the individual
two-body amplitudes. This much simplified form is ideal
for the development of a computer programme (e.g., Mad-
Graph [20]) based on helicity-amplitude subroutines (e.g.,
Helas [21]) for the automatic generation of cross-sections
for any twist-three single-spin asymmetry.

In concluding, let us first of all highlight a difference
in the interpretation of the origin of the xF dependence
with respect to [12], where the presence of the derivative
of a qqg correlator was claimed responsible for the rise
in polarisation effects towards the edges of parton phase-
space. Here, in contrast, the remnant factors of (−t)− 1

2 ,
(−u)− 1

2 are seen to lie at the origin of this behaviour. It
should be stressed that this transparency is due to the
factorisation procedure presented.

It is also worth pointing out that the triple-gluon con-
tributions, being insensitive to flavour, are also suggested
by the experimentally observed approximately equal mag-
nitudes and opposite signs of the π+ and π− asymmetries,
where one might have expected a ratio of the order of
three to one (with opposite signs), according to SU(6).
The (flavour-blind) triple-gluon contribution could lead
to just the required net shift of both asymmetries in the
same direction.

With the above formulation in terms of four-body am-
plitudes, it will not be difficult to set up an analysis of the
existing data, from which a general parametrisation of the
partonic correlators may be determined in a manner sim-
ilar to that of Anselmino et al. [9]. On the other hand,
the procedure adopted here is purely pQCD based and,
in particular, requires no assumptions as to the nature
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of intrinsic sT -kT correlations. Indeed, the factorisation
property presented should help in clarifying the physical
significance of the trade-off between the operator-product
expansion description in terms of fields with only “good”
components [6] and the kT dependence augmenting the
parton picture [9].

As an example process, we have considered left-right
asymmetries for final-state hadrons produced in hadron-
hadron collisions with a single initial state polarised. How-
ever, it is clear that the proposed factorisation may be ex-
tended to many other processes in straight-forward man-
ner, including those involving polarised and unpolarised
twist-three fragmentation functions. As remarked above,
one could also consider measuring the up-down asymme-
try predicted to exist for scattering involving one trans-
verse polarisation and one longitudinal. While this asym-
metry also contains twist-2 contributions, it would allow
for a cross-check measurement of some of the distributions
invoked here. The obvious advantage of the single-spin
measurements (apart from their experimental accessibil-
ity) lies in their automatic and complete filtering of all
twist-2 effects.
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